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Inverse Resolution of the Heat-Transfer Equation 
with Internal Heat Source: Application to the 

Quenching of Steels with Phase Transformations 
P. Archambault, S. Denis, and A. Azim 

A method is described for calculating the time dependence of the temperature and heat flux (on heating 
and cooling) at the surface of a solid body. For a given ambient temperature and a known time-tempera- 
ture function of an interior point, the surface heat flux is computed through an inverse conduction algo- 
rithm taking into account the nonlinear nature of the problem. Moreover, this algorithm includes the 
enthalpy of phase transformations. The influence of space and time steps on inverse calculations (preci- 
sion, stability) is investigated. The method is then applied to thermal cases involving different transfor- 
mations in steels. 
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Introduction 

tion of thermal and metallurgical processes in a global heat 
conduction inverse resolution algorithm. 

This paper describes the different components of the model 
and its numerical validation. The model is then applied to heat 
treatment of steels. 

GENERALLY, heat treating of metallic mechanical parts in- 
volves different temperature-dependent phenomena, such as 
thermal gradients, deformations, stresses, and metallurgical 
transformations. These processes affect the final state of the 
treated part (e.g., structure, mechanical properties, residual 
stresses, and surface hardening), but can be strongly interde- 
pendent through complex relationships. In order to simulate the 
entire heat treatment, one must take into account this interde- 
pendence with the aid of specific, but connected, algorithms. 

The basis of these phenomena is the thermal evolution of the 
part, which must be precisely controlled to reach the desired 
properties. However, if one can easily measure the temperature 
of inner locations, the time dependence of the thermal flux at 
the surface of the part is not experimentally accessible and must 
be calculated for further thermal, mechanical, and metallurgi- 
cal calculations. 

Prediction of thermal distribution and surface heat flux in- 
volves an inverse heat conduction calculation, which has al- 
ready been treated by many investigators. Unlike analytical 
methods, which are limited to linear one-dimensional prob- 
lems, discrete methods based on finite differences or finite ele- 
ments can be applied to any problem (Ref 1-4). However, these 
latter methods induce numerical noise and oscillations due to 
the unstable nature of the inverse problem. 

In addition, previous investigations considered pure ther- 
mal problems with no internal source of energy. This must be 
reconsidered in the case of materials such as steels which pre- 
sent endothermal or exothermal metallurgical transformations 
during heat treating. The aim of the present study is the associa- 
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2. Problem Formulation 

Let us consider a one-dimensional heat conduction problem 
applied to an infinite cylinder initially at uniform temperature 
T 0. Our aim is to calculate the heat flux at the surface of the cyl- 
inder, given the temperature evolution measured at inner loca- 
tion r = r e and considering the internal energy source. 

The heat conduction transfer is then governed by: 

 rlr ~ T  1 ~. + Q(r,t) 
p Cp ~t - r 

where ~. is thermal conductivity, Cp is specific heat, p is den- 
sity, and Q is the internal energy generated by phase transfor- 
mations. The initial and boundary conditions are: 

t=O 

T(r,O) = T o 

[2(r,O) = 0 

t > 0  

~ 

=0 

- [~ rL=R = r (to be estimated) 
% / ,  

T(re, t ) = r(t) (measured) 

Q(r,t) (calculated, metallurgy dependent) 
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where R is the radius of  the cylinder (r e < R) and ~ is the surface 
heat flux. 

2.1 Inverse Heat Conduction Method 

In this study, we have adapted the inverse method already 
developed (Ref 5) in order to take into account the phase trans- 
formations that can arise during heat treatment of  the consid- 
ered alloy. This method requires solving two separate problems 
(Fig. 1). 

The direct conduction problem involves calculating at each 
time step the temperature profile in the inner region (0 < r < re) 
for which all the boundary conditions are known. The numeri- 
cal method employed here is a classical implicit standard finite- 
difference algorithm. 

Inverse conduction problem. With the previously calculated 
temperature field in the direct region and the measured tem- 
perature history at location re, an inverse space marching finite- 
difference algorithm is then used to determine the temperature 
field in the inverse region (r e < r < R). 

The temperature distribution in the inverse region (i = e to i 
= M - 1) is obtained by: 

T ~ + t = ~ _  ~1 [ ~ - I  + D ~ . ~ ) ~ _ A J ~ T ~ _ I _ B ~ T ~  ] 

with 

_ a t  1 A~t~= [(Ar2)2 ( --Ar21~/+l/21~ri)~ j 

(~i : - [(ArA:)"-'-~ ( 1 + Ar2 / ~i" . 1/2] "~r/J ~ J  

B~i= 1 +A~+ q 

At 
/)tj = (pCp) 

direct 
d v 

region 

~k known boundary 
condition 

1 " 

I 

I inverse 

I ~ region 
I 
I 

I measured 
temperature 

I 

7" 
u n k n o w n  
T and o = f(t) 

M . . . . . . . . . . .  , m -- n 

I ~- -~ i I ~ re ~r 2 

center surface 

Fig. 1 Illustration of the inverse problem (direct and inverse 
regions) 

where i and j  stand for space and time incrementation, respec- 
tively. 

At the end, the unknown surface heat flux is calculated from 
the energy balance at the surface node M. It is given by: 

2At Ar 2 - 1 - ~ - ~  

)~ 74M_1 74M - lgM-I ~)]M Ar2 
Ar 2 

2 . 2  Phase Transformation Calculation 

The basis of  the phase transformation modeling has been de- 
veloped and applied to steels previously (Ref 6). The heat in- 
volved during a phase transformation is related to the kinetics 
of  the different activated transformations through: 

dYk b=L kW 

where AH k is the transformation enthalpy and Yk is the volume 
fraction of constituent k. This term assures the thermal-phase 
transformation coupling. 

The thermophysical properties (~,, p, Cp) depend on tem- 
perature and on the volume fractions of  transformed phases 
through a linear mixture rule, as exemplified below for thermal 
conductivity (n components): 

n 

~" : Z Yk(r't) )~k {T(r,t)} 
k = l  

The phase transformation calculation is based on the addi- 
tivity principle. The continuous temperature-time evolution is 
discretized in a series of  isothermal steps. At each step, the vol- 
ume fraction of each phase is calculated. For diffusion-control- 
led transformations, the incubation process is first treated 
according to Scheil 's method: 

S= Z Ati 
z(T i) 

i 

where At i is the time step and x(Ti) is the incubation time of the 
isothermal transformation at temperature T i. When S = 1, the 
growth process is involved by using isothermal transformation 
kinetics, which are modeled--according to Johnson-Mehl- 
Avrami 's  law; that is, for constituent k at a given temperature: 

Yk = Ymax k [1 -- exp (-bktnk)] 

where Yk is the volume fraction transformed at time t and Ymaxk 
is the maximum volume fraction of constituent k that can be 
formed at that temperature. The coefficients b k and n k are cal- 

Journal of Materials Engineering and Performance Volume 6(2) April 1997--241 



culated with the aid of  experimental isothermal transformation 
fIT) kinetics obtained for a set of  temperatures. 

The diffusionless transformation (i.e., martensitic trans- 
formation) is calculated using Koistinen and Marburger 's  
relation: 

Yk = I - exp [-Am(M s - T)] 

where A m is the Koistinen and Marburger coefficient and M s is 
the martensitic transformation start temperature. A further de- 
scription of  the metallurgical parameters included in this phase 
transformation model can be found in Ref 6. 
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Fig. 2 Simplified flowchart of the entire procedure 

A simplified flowchart of  the numerical calculation devel- 
oped for coupling the thermal inverse method and phase .trans- 
formation model is shown in Fig. 2. For metallurgical 
considerations, the phase transformation modeling is divided 
in two parts for heating and cooling thermal evolutions. The 
main results obtained at the end of  the calculation are: 

�9 Temperature distribution along the radius 

�9 Surface heat flux density evolution 

�9 Phase volume fractions variations with time 

�9 Phase volume fractions along the radius 
�9 Radial hardness profile 
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Fig. 3 Thermophysical properties of the XC42 steel 
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3. Tests and Results 

The response of the method has been tested on cylindrical 
specimens (r = 16 mm) for hypoeutectoid (XC42) and eutec- 
toid (XC80) carbon steels presenting different phase transfor- 
mations on heating and cooling (austenitic, martensitic, and 
pearlitic transformations). 
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Fig. 4 Direct calculation: input exact heat flux and calculated 
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3.1 Calculation Input Data 

For the alloys under consideration, the main thermal input 
data are the variations of the thermophysical properties with 
temperature for each constituent and the transformation en- 
thalpy for each phase transformation. Figure 3 shows the ther- 
mophysical properties of austenite and ferrite versus 
temperature for the XC42 steel (Ref 7). 
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Fig. 6 Influence of time step for Ar 2 = 1/11 mm: heat flux error 
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The transformation enthalpy values for XC42 and XC80 are 
given by: 

�9 XC42 

AH = -3.05 x 108 + 9.26 x 103 T + 9.91 T 2 (J/m 3) (pear- 

lite-ferrite ---> austenite) 

AH = 6.48 x 108 Jim 3 (martensite transformation) 

�9 X C 8 0  

AH = -1.56 x 109 + 1.50 x 106 T(AH, J/m3; T, ~ (pear- 

lite --> austenite) 

A H =  1.56 x 109 - 1.50 x 106 T(AH, j/m3; T, ~ 

(austenite -* pearlite) 

The data used in the phase transformation calculat ion are 
IT curves on heating and IT curves for the onset of  transfor- 
mation, for 10% and 90% consti tuent formed during the 
cool ing (Ref 6, 8). 

3.2 Influence of Space and Time Steps 

First, the numerical solution of  the direct conduction prob- 
lem for a given heat flux evolution imposed at the surface of  the 
cylinder is used to generate the temperature evolution at inner 
position r = r e (1 mm under the active surface). This set point 
and the calculated T =f i t )  curves are shown in Fig. 4. This in- 
formation is analogous to the thermocouple data that would 
normally be obtained experimentally. It is considered here as 
an "exact" result and used as the input data of the inverse task 
to study the response of the method. 

The first test concerns the influence of  a space step variation 
in the inverse region (Ar2). For that test, At is constant (0.01 s), 
and we calculate the surface temperature and heat flux for sev- 
eral Ar 2 values (1/7, 1/11, 1/13, and 1/17 ram). The results, 
shown in Fig. 5, reveal that the accuracy of the calculation is se- 
riously affected when Ar 2 is either too high or too low and the 
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Fig. 7 Optimized surface temperature and heat flux evolutions 
(martensitic transformation) 

oscillations are not sensitive to Ar 2 variation. The deviation be- 
tween direct and inverse results can exceed 10% in temperature 
and 30% in heat flux for Ar 2 = 1/17 mm. 

At the heating/cooling transition, the computation results 
cannot account for the rapid change of  the heat transfer. This 
can be attributed to the effect of the initial temperature radial 
profile used for cooling, which is nonuniform at the end of the 
heating procedure. This problem has already been studied for a 
steel quenching application (Ref 5). Excepting this instantane- 
ous transition, a satisfying solution is obtained for Ar 2 = 1/11 
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mm (11 points are considered in the inverse region) where the 
temperature difference does not exceed 4% and the heat flux 
difference does not exceed 10%. 

The second test concerns the influence of  a time step vari- 
ation. In that case, Ar 2 is constant (1/11 mm), and we calculate 
the surface temperature and heat flux for several At values 
(0.05, 0.01, and 0.005 s). It should be noted (Fig. 6) that the es- 
timated heat flux oscillates around the "exact" solution and the 
amplitude of  the oscillations increases when At is too small, es- 
pecially in the phase transformation domains. This can be fil- 
tered by increasing At without significantly affecting the 
solution. 

These tests show that the precision of the inverse method is 
conditioned by the space step and that the stability is closely re- 
lated to the time step. Then, in order to obtain a realistic estima- 
tion, it is necessary to compromise between stability and 
precision by finding an adequate choice of the At and Ar 2 steps. 

3.3 Application Examples 

3.3.1 XC42 Steel 

In this application, we use the temperature evolution 
shown in Fig. 4 for an XC42 steel cylinder.  This condit ion 
imposed at the specimen boundary (high heating and cool-  
ing rate) has been chosen in order  to promote austenit ization 
and subsequent martensit ic transformation in the superficial  
zone (surface-hardening heat  treatment). The inverse calcu- 
lations are performed using the opt imum values o f  space and 
time steps (At = 0.01 s and Ar 2 = 1/11 mm). The correspond- 
ing thermal results are reported in Fig. 7. The osci l lat ions in 
the heat flux evolution are mainly due to the numerical  con- 
vergence in the austenitic and martensitic transformation 
domains.  Globally,  this computat ional  model  gives very 
precise surface temperature and heat flux evolutions in both 
heating and cooling treatments.  

Taking a metallurgical point of  view, the radial profile of  the 
maximum temperature reached on heating and the austenite 
volume fraction are computed. They are reported in Fig. 8(a). It 
is evident that the austenite fraction in the inner region (r  = 0.0 
mm, r = 3.8 mm) is null due to an insufficient temperature at 
the end of heating, which is lower than the transformation tem- 
perature (Ac 1 = 740 ~ The superficial zone (r = 5.4 mm, r = 
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8 mm) is completely austenitized. Using the inverse method, 
the austenite volume fraction reached at the end of  heating is in 
very good agreement with the direct method calculation re- 
suits. 

On cooling, the martensite fractions and hardness level evo- 
lutions are calculated. The radial profile, at the end of  cooling, 
of  the martensite and retained austenite fraction is shown in 
Fig. 8(b) and that of  the hardness is shown in Fig. 8(c). They re- 
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veal the expected surface hardening and are consistent with 
those obtained with the direct calculations. 

3.3.2 XCS0 Steel 

Consider an XC80 steel (eutectoid steel) cylinder. The heat 
flux evolution imposed at the surface of  the cylinder to generate 
the temperature evolution at inner position r = r e (1 mm under 
the active surface) is shown in Fig. 9. This heat flux evolution 
(low cooling rate) is especially chosen to promote pearlitic 
transformation, generating a consequent internal energy. 

The inverse calculations are performed with Ar 2 = 1/10 mm 
and At = 0.01 s. The calculated temperature, heat flux, and 
austenite-pearlite volume fraction evolutions are presented in 
Fig. 10. On cooling, the temperature increase due to austenite- 
pearlite transformation is observed. The temperature and heat 
flux predictions are very correct if one compares the inverse 
and the direct calculations. The deviation does not exceed 0.1 
and 10%, respectively. Compared to the previous case, this im- 
provement is mainly due to the low heating and cooling rates, 
leading to a low thermal gradient at the end of heating and dur- 
ing pearlitic transformation. 

5. Conclusions 

In this study a numerical model of  the inverse heat conduc- 
tion problem taking into account the phase transformations has 
been developed to predict the thermal evolution (surface tem- 
perature, heat flux) and to estimate the phase transformation 
during heating and cooling of  cylindrical specimens. We have 
studied the calculation sensitivity to space and time step vari- 
ations. We can conclude that precision is conditioned by Ar 2 
and that stability is closely related to At. We also have tested the 

phase transformation calculation and shown that the inverse 
method gives satisfying results in both thermal and transforma- 
tion kinetics. 

This work is continuing in order to establish the tolerable 
limits of this inverse method. Particular attention is being paid 
to (1) the sensitivity of the calculations, (2) the error measure- 
ments, (3) the thermocouple locations, and (4) the thermo- 
physical properties of  the material. 
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